mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-17 07:04:18 +08:00
Derive WaldBoost from Algorithm
This commit is contained in:
@@ -108,56 +108,10 @@ struct CV_EXPORTS WaldBoostParams
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS Stump
|
||||
{
|
||||
public:
|
||||
|
||||
/* Initialize zero stump */
|
||||
Stump(): threshold_(0), polarity_(1), pos_value_(1), neg_value_(-1) {}
|
||||
|
||||
/* Initialize stump with given threshold, polarity
|
||||
and classification values */
|
||||
Stump(int threshold, int polarity, float pos_value, float neg_value):
|
||||
threshold_(threshold), polarity_(polarity),
|
||||
pos_value_(pos_value), neg_value_(neg_value) {}
|
||||
|
||||
/* Train stump for given data
|
||||
|
||||
data — matrix of feature values, size M x N, one feature per row
|
||||
|
||||
labels — matrix of sample class labels, size 1 x N. Labels can be from
|
||||
{-1, +1}
|
||||
|
||||
weights — matrix of sample weights, size 1 x N
|
||||
|
||||
Returns chosen feature index. Feature enumeration starts from 0
|
||||
*/
|
||||
int train(const Mat& data, const Mat& labels, const Mat& weights);
|
||||
|
||||
/* Predict object class given
|
||||
|
||||
value — feature value. Feature must be the same as was chosen
|
||||
during training stump
|
||||
|
||||
Returns real value, sign(value) means class
|
||||
*/
|
||||
float predict(int value) const;
|
||||
|
||||
private:
|
||||
/* Stump decision threshold */
|
||||
int threshold_;
|
||||
/* Stump polarity, can be from {-1, +1} */
|
||||
int polarity_;
|
||||
/* Classification values for positive and negative classes */
|
||||
float pos_value_, neg_value_;
|
||||
};
|
||||
|
||||
class CV_EXPORTS WaldBoost : public Algorithm
|
||||
{
|
||||
public:
|
||||
/* Initialize WaldBoost cascade with default of specified parameters */
|
||||
WaldBoost(const WaldBoostParams& params = WaldBoostParams());
|
||||
|
||||
/* Train WaldBoost cascade for given data
|
||||
|
||||
data — matrix of feature values, size M x N, one feature per row
|
||||
@@ -168,8 +122,8 @@ public:
|
||||
Returns feature indices chosen for cascade.
|
||||
Feature enumeration starts from 0
|
||||
*/
|
||||
std::vector<int> train(const Mat& data,
|
||||
const Mat& labels);
|
||||
virtual std::vector<int> train(const Mat& data,
|
||||
const Mat& labels) = 0;
|
||||
|
||||
/* Predict object class given object that can compute object features
|
||||
|
||||
@@ -178,17 +132,14 @@ public:
|
||||
Returns confidence_value — measure of confidense that object
|
||||
is from class +1
|
||||
*/
|
||||
float predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator);
|
||||
virtual float predict(
|
||||
const Ptr<ACFFeatureEvaluator>& feature_evaluator) const = 0;
|
||||
|
||||
private:
|
||||
/* Parameters for cascade training */
|
||||
WaldBoostParams params_;
|
||||
/* Stumps in cascade */
|
||||
std::vector<Stump> stumps_;
|
||||
/* Rejection thresholds for linear combination at every stump evaluation */
|
||||
std::vector<float> thresholds_;
|
||||
};
|
||||
|
||||
CV_EXPORTS Ptr<WaldBoost>
|
||||
createWaldBoost(const WaldBoostParams& params = WaldBoostParams());
|
||||
|
||||
struct CV_EXPORTS ICFDetectorParams
|
||||
{
|
||||
int feature_count;
|
||||
|
@@ -137,8 +137,8 @@ void ICFDetector::train(const vector<string>& image_filenames,
|
||||
wparams.weak_count = params.weak_count;
|
||||
wparams.alpha = 0.001f;
|
||||
|
||||
WaldBoost waldboost(wparams);
|
||||
waldboost.train(data, labels);
|
||||
Ptr<WaldBoost> waldboost = createWaldBoost(wparams);
|
||||
waldboost->train(data, labels);
|
||||
}
|
||||
|
||||
bool ICFDetector::save(const string&)
|
||||
|
@@ -43,6 +43,7 @@ the use of this software, even if advised of the possibility of such damage.
|
||||
#define __OPENCV_XOBJDETECT_PRECOMP_HPP__
|
||||
|
||||
#include <opencv2/xobjdetect.hpp>
|
||||
#include <opencv2/xobjdetect/private.hpp>
|
||||
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
|
@@ -41,7 +41,6 @@ the use of this software, even if advised of the possibility of such damage.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
|
||||
using std::swap;
|
||||
|
||||
using std::vector;
|
||||
@@ -51,11 +50,30 @@ namespace cv
|
||||
namespace xobjdetect
|
||||
{
|
||||
|
||||
WaldBoost::WaldBoost(const WaldBoostParams& params): params_(params)
|
||||
class WaldBoostImpl : public WaldBoost
|
||||
{
|
||||
}
|
||||
public:
|
||||
/* Initialize WaldBoost cascade with default of specified parameters */
|
||||
WaldBoostImpl(const WaldBoostParams& params):
|
||||
params_(params)
|
||||
{}
|
||||
|
||||
vector<int> WaldBoost::train(const Mat& data, const Mat& labels)
|
||||
virtual std::vector<int> train(const Mat& data,
|
||||
const Mat& labels);
|
||||
|
||||
virtual float predict(
|
||||
const Ptr<ACFFeatureEvaluator>& feature_evaluator) const;
|
||||
|
||||
private:
|
||||
/* Parameters for cascade training */
|
||||
WaldBoostParams params_;
|
||||
/* Stumps in cascade */
|
||||
std::vector<Stump> stumps_;
|
||||
/* Rejection thresholds for linear combination at every stump evaluation */
|
||||
std::vector<float> thresholds_;
|
||||
};
|
||||
|
||||
vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
|
||||
{
|
||||
CV_Assert(labels.rows == 1 && labels.cols == data.cols);
|
||||
|
||||
@@ -144,7 +162,8 @@ vector<int> WaldBoost::train(const Mat& data, const Mat& labels)
|
||||
return feature_indices;
|
||||
}
|
||||
|
||||
float WaldBoost::predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator)
|
||||
float WaldBoostImpl::predict(
|
||||
const Ptr<ACFFeatureEvaluator>& feature_evaluator) const
|
||||
{
|
||||
float trace = 0;
|
||||
for( size_t i = 0; i < stumps_.size(); ++i )
|
||||
@@ -157,5 +176,12 @@ float WaldBoost::predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator)
|
||||
return trace;
|
||||
}
|
||||
|
||||
Ptr<WaldBoost>
|
||||
createWaldBoost(const WaldBoostParams& params)
|
||||
{
|
||||
return Ptr<WaldBoost>(new WaldBoostImpl(params));
|
||||
}
|
||||
|
||||
|
||||
} /* namespace xobjdetect */
|
||||
} /* namespace cv */
|
||||
|
Reference in New Issue
Block a user