1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-16 22:35:51 +08:00

Derive WaldBoost from Algorithm

This commit is contained in:
Vlad Shakhuro
2014-07-03 09:01:50 +04:00
parent a9599990f0
commit a8f9344ef8
4 changed files with 41 additions and 63 deletions

View File

@@ -108,56 +108,10 @@ struct CV_EXPORTS WaldBoostParams
};
class CV_EXPORTS Stump
{
public:
/* Initialize zero stump */
Stump(): threshold_(0), polarity_(1), pos_value_(1), neg_value_(-1) {}
/* Initialize stump with given threshold, polarity
and classification values */
Stump(int threshold, int polarity, float pos_value, float neg_value):
threshold_(threshold), polarity_(polarity),
pos_value_(pos_value), neg_value_(neg_value) {}
/* Train stump for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
weights — matrix of sample weights, size 1 x N
Returns chosen feature index. Feature enumeration starts from 0
*/
int train(const Mat& data, const Mat& labels, const Mat& weights);
/* Predict object class given
value — feature value. Feature must be the same as was chosen
during training stump
Returns real value, sign(value) means class
*/
float predict(int value) const;
private:
/* Stump decision threshold */
int threshold_;
/* Stump polarity, can be from {-1, +1} */
int polarity_;
/* Classification values for positive and negative classes */
float pos_value_, neg_value_;
};
class CV_EXPORTS WaldBoost : public Algorithm
{
public:
/* Initialize WaldBoost cascade with default of specified parameters */
WaldBoost(const WaldBoostParams& params = WaldBoostParams());
/* Train WaldBoost cascade for given data
data — matrix of feature values, size M x N, one feature per row
@@ -168,8 +122,8 @@ public:
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
std::vector<int> train(const Mat& data,
const Mat& labels);
virtual std::vector<int> train(const Mat& data,
const Mat& labels) = 0;
/* Predict object class given object that can compute object features
@@ -178,17 +132,14 @@ public:
Returns confidence_value — measure of confidense that object
is from class +1
*/
float predict(const Ptr<ACFFeatureEvaluator>& feature_evaluator);
virtual float predict(
const Ptr<ACFFeatureEvaluator>& feature_evaluator) const = 0;
private:
/* Parameters for cascade training */
WaldBoostParams params_;
/* Stumps in cascade */
std::vector<Stump> stumps_;
/* Rejection thresholds for linear combination at every stump evaluation */
std::vector<float> thresholds_;
};
CV_EXPORTS Ptr<WaldBoost>
createWaldBoost(const WaldBoostParams& params = WaldBoostParams());
struct CV_EXPORTS ICFDetectorParams
{
int feature_count;