mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-21 23:01:45 +08:00
avoid Ptr<> == NULL
checks
This commit is contained in:
@@ -562,7 +562,7 @@ bool RetinaImpl::ocl_run(InputArray inputMatToConvert)
|
|||||||
|
|
||||||
void RetinaImpl::run(InputArray inputMatToConvert)
|
void RetinaImpl::run(InputArray inputMatToConvert)
|
||||||
{
|
{
|
||||||
CV_OCL_RUN((_ocl_retina != 0 && inputMatToConvert.isUMat()), ocl_run(inputMatToConvert));
|
CV_OCL_RUN((_ocl_retina && inputMatToConvert.isUMat()), ocl_run(inputMatToConvert));
|
||||||
|
|
||||||
_wasOCLRunCalled = false;
|
_wasOCLRunCalled = false;
|
||||||
// first convert input image to the compatible format : std::valarray<float>
|
// first convert input image to the compatible format : std::valarray<float>
|
||||||
@@ -830,7 +830,7 @@ bool RetinaImpl::_convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray
|
|||||||
void RetinaImpl::clearBuffers()
|
void RetinaImpl::clearBuffers()
|
||||||
{
|
{
|
||||||
#ifdef HAVE_OPENCL
|
#ifdef HAVE_OPENCL
|
||||||
if (_ocl_retina != 0)
|
if (_ocl_retina)
|
||||||
_ocl_retina->clearBuffers();
|
_ocl_retina->clearBuffers();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@@ -1055,8 +1055,8 @@ bool Odometry::compute(Ptr<OdometryFrame>& srcFrame, Ptr<OdometryFrame>& dstFram
|
|||||||
|
|
||||||
Size Odometry::prepareFrameCache(Ptr<OdometryFrame> &frame, int /*cacheType*/) const
|
Size Odometry::prepareFrameCache(Ptr<OdometryFrame> &frame, int /*cacheType*/) const
|
||||||
{
|
{
|
||||||
if(frame == 0)
|
if (!frame)
|
||||||
CV_Error(Error::StsBadArg, "Null frame pointer.\n");
|
CV_Error(Error::StsBadArg, "Null frame pointer.");
|
||||||
|
|
||||||
return Size();
|
return Size();
|
||||||
}
|
}
|
||||||
|
@@ -665,12 +665,12 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
|||||||
child->level = child->level*thresholdDelta;
|
child->level = child->level*thresholdDelta;
|
||||||
|
|
||||||
// before saving calculate P(child|character) and filter if possible
|
// before saving calculate P(child|character) and filter if possible
|
||||||
if (classifier != NULL)
|
if (classifier)
|
||||||
{
|
{
|
||||||
child->probability = classifier->eval(*child);
|
child->probability = classifier->eval(*child);
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( (((classifier!=NULL)?(child->probability >= minProbability):true)||(nonMaxSuppression)) &&
|
if ( (((classifier)?(child->probability >= minProbability):true)||(nonMaxSuppression)) &&
|
||||||
((child->area >= (minArea*region_mask.rows*region_mask.cols)) &&
|
((child->area >= (minArea*region_mask.rows*region_mask.cols)) &&
|
||||||
(child->area <= (maxArea*region_mask.rows*region_mask.cols)) &&
|
(child->area <= (maxArea*region_mask.rows*region_mask.cols)) &&
|
||||||
(child->rect.width > 2) && (child->rect.height > 2)) )
|
(child->rect.width > 2) && (child->rect.height > 2)) )
|
||||||
@@ -858,12 +858,12 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa
|
|||||||
|
|
||||||
|
|
||||||
// calculate P(child|character) and filter if possible
|
// calculate P(child|character) and filter if possible
|
||||||
if ( (classifier != NULL) && (stat->parent != NULL) )
|
if (classifier && (stat->parent != NULL))
|
||||||
{
|
{
|
||||||
stat->probability = classifier->eval(*stat);
|
stat->probability = classifier->eval(*stat);
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) &&
|
if ( ( ((classifier)?(stat->probability >= minProbability):true) &&
|
||||||
((stat->area >= minArea*region_mask.rows*region_mask.cols) &&
|
((stat->area >= minArea*region_mask.rows*region_mask.cols) &&
|
||||||
(stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) ||
|
(stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) ||
|
||||||
(stat->parent == NULL) )
|
(stat->parent == NULL) )
|
||||||
|
@@ -93,7 +93,7 @@ int main( int argc, char** argv ){
|
|||||||
|
|
||||||
//instantiates the specific Tracker
|
//instantiates the specific Tracker
|
||||||
Ptr<Tracker> tracker = createTrackerByName(tracker_algorithm);
|
Ptr<Tracker> tracker = createTrackerByName(tracker_algorithm);
|
||||||
if( tracker == NULL )
|
if (!tracker)
|
||||||
{
|
{
|
||||||
cout << "***Error in the instantiation of the tracker...***\n";
|
cout << "***Error in the instantiation of the tracker...***\n";
|
||||||
return -1;
|
return -1;
|
||||||
|
@@ -145,7 +145,7 @@ int main(int argc, char *argv[])
|
|||||||
|
|
||||||
//Create Tracker
|
//Create Tracker
|
||||||
Ptr<Tracker> tracker = createTrackerByName(tracker_algorithm);
|
Ptr<Tracker> tracker = createTrackerByName(tracker_algorithm);
|
||||||
if (tracker == NULL)
|
if (!tracker)
|
||||||
{
|
{
|
||||||
cout << "***Error in the instantiation of the tracker...***\n";
|
cout << "***Error in the instantiation of the tracker...***\n";
|
||||||
getchar();
|
getchar();
|
||||||
|
@@ -47,7 +47,7 @@ namespace cv
|
|||||||
bool MultiTracker_Alt::addTarget(InputArray image, const Rect2d& boundingBox, Ptr<Tracker> tracker_algorithm)
|
bool MultiTracker_Alt::addTarget(InputArray image, const Rect2d& boundingBox, Ptr<Tracker> tracker_algorithm)
|
||||||
{
|
{
|
||||||
Ptr<Tracker> tracker = tracker_algorithm;
|
Ptr<Tracker> tracker = tracker_algorithm;
|
||||||
if (tracker == NULL)
|
if (!tracker)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
if (!tracker->init(image, boundingBox))
|
if (!tracker->init(image, boundingBox))
|
||||||
|
@@ -70,7 +70,7 @@ bool Tracker::init( InputArray image, const Rect2d& boundingBox )
|
|||||||
bool initTracker = initImpl( image.getMat(), boundingBox );
|
bool initTracker = initImpl( image.getMat(), boundingBox );
|
||||||
|
|
||||||
//check if the model component is initialized
|
//check if the model component is initialized
|
||||||
if( model == 0 )
|
if (!model)
|
||||||
{
|
{
|
||||||
CV_Error( -1, "The model is not initialized" );
|
CV_Error( -1, "The model is not initialized" );
|
||||||
}
|
}
|
||||||
|
@@ -101,7 +101,7 @@ bool TrackerFeatureSet::addTrackerFeature( String trackerFeatureType )
|
|||||||
}
|
}
|
||||||
Ptr<TrackerFeature> feature = TrackerFeature::create( trackerFeatureType );
|
Ptr<TrackerFeature> feature = TrackerFeature::create( trackerFeatureType );
|
||||||
|
|
||||||
if( feature == 0 )
|
if (!feature)
|
||||||
{
|
{
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@@ -61,7 +61,7 @@ TrackerModel::~TrackerModel()
|
|||||||
|
|
||||||
bool TrackerModel::setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator )
|
bool TrackerModel::setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator )
|
||||||
{
|
{
|
||||||
if( stateEstimator != 0 )
|
if (stateEstimator.get())
|
||||||
{
|
{
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@@ -109,12 +109,12 @@ void TrackerModel::modelUpdate()
|
|||||||
|
|
||||||
bool TrackerModel::runStateEstimator()
|
bool TrackerModel::runStateEstimator()
|
||||||
{
|
{
|
||||||
if( stateEstimator == 0 )
|
if (!stateEstimator)
|
||||||
{
|
{
|
||||||
CV_Error( -1, "Tracker state estimator is not setted" );
|
CV_Error( -1, "Tracker state estimator is not setted" );
|
||||||
}
|
}
|
||||||
Ptr<TrackerTargetState> targetState = stateEstimator->estimate( confidenceMaps );
|
Ptr<TrackerTargetState> targetState = stateEstimator->estimate( confidenceMaps );
|
||||||
if( targetState == 0 )
|
if (!targetState)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
setLastTargetState( targetState );
|
setLastTargetState( targetState );
|
||||||
|
@@ -96,7 +96,7 @@ bool TrackerSampler::addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmT
|
|||||||
}
|
}
|
||||||
Ptr<TrackerSamplerAlgorithm> sampler = TrackerSamplerAlgorithm::create( trackerSamplerAlgorithmType );
|
Ptr<TrackerSamplerAlgorithm> sampler = TrackerSamplerAlgorithm::create( trackerSamplerAlgorithmType );
|
||||||
|
|
||||||
if( sampler == 0 )
|
if (!sampler)
|
||||||
{
|
{
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@@ -113,7 +113,7 @@ bool TrackerSampler::addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& s
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if( sampler == 0 )
|
if (!sampler)
|
||||||
{
|
{
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@@ -262,14 +262,14 @@ TEST(Features2d_BruteForceDescriptorMatcher_knnMatch, regression)
|
|||||||
const int k = 3;
|
const int k = 3;
|
||||||
|
|
||||||
Ptr<DescriptorExtractor> ext = SURF::create();
|
Ptr<DescriptorExtractor> ext = SURF::create();
|
||||||
ASSERT_TRUE(ext != NULL);
|
ASSERT_TRUE(ext);
|
||||||
|
|
||||||
Ptr<FeatureDetector> det = SURF::create();
|
Ptr<FeatureDetector> det = SURF::create();
|
||||||
//"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"
|
//"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"
|
||||||
ASSERT_TRUE(det != NULL);
|
ASSERT_TRUE(det);
|
||||||
|
|
||||||
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
|
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
|
||||||
ASSERT_TRUE(matcher != NULL);
|
ASSERT_TRUE(matcher);
|
||||||
|
|
||||||
Mat imgT(256, 256, CV_8U, Scalar(255));
|
Mat imgT(256, 256, CV_8U, Scalar(255));
|
||||||
line(imgT, Point(20, sz/2), Point(sz-21, sz/2), Scalar(100), 2);
|
line(imgT, Point(20, sz/2), Point(sz-21, sz/2), Scalar(100), 2);
|
||||||
|
Reference in New Issue
Block a user