mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-15 20:37:07 +08:00
Merge pull request #2131 from asashour:param
* doc: fix return parameter for void method * docs: add missing parameter description
This commit is contained in:

committed by
Alexander Alekhin

parent
4446ef5ee8
commit
cd7276f41f
@@ -262,7 +262,7 @@ CV_EXPORTS_W void estimatePoseSingleMarkers(InputArrayOfArrays corners, float ma
|
||||
/**
|
||||
* @brief Board of markers
|
||||
*
|
||||
* A board is a set of markers in the 3D space with a common cordinate system.
|
||||
* A board is a set of markers in the 3D space with a common coordinate system.
|
||||
* The common form of a board of marker is a planar (2D) board, however any 3D layout can be used.
|
||||
* A Board object is composed by:
|
||||
* - The object points of the marker corners, i.e. their coordinates respect to the board system.
|
||||
@@ -273,7 +273,7 @@ class CV_EXPORTS_W Board {
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Provide way to create Board by passing nessesary data. Specially needed in Python.
|
||||
* @brief Provide way to create Board by passing necessary data. Specially needed in Python.
|
||||
*
|
||||
* @param objPoints array of object points of all the marker corners in the board
|
||||
* @param dictionary the dictionary of markers employed for this board
|
||||
@@ -297,7 +297,7 @@ class CV_EXPORTS_W Board {
|
||||
|
||||
/**
|
||||
* @brief Planar board with grid arrangement of markers
|
||||
* More common type of board. All markers are placed in the same plane in a grid arrangment.
|
||||
* More common type of board. All markers are placed in the same plane in a grid arrangement.
|
||||
* The board can be drawn using drawPlanarBoard() function (@sa drawPlanarBoard)
|
||||
*/
|
||||
class CV_EXPORTS_W GridBoard : public Board {
|
||||
|
@@ -180,8 +180,8 @@ public:
|
||||
CV_WRAP virtual void run(InputArray inputToSegment, const int channelIndex=0)=0;
|
||||
|
||||
/** @brief access function
|
||||
@return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
|
||||
*/
|
||||
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
|
||||
*/
|
||||
CV_WRAP virtual void getSegmentationPicture(OutputArray transientAreas)=0;
|
||||
|
||||
/** @brief cleans all the buffers of the instance
|
||||
|
@@ -166,7 +166,7 @@ public:
|
||||
|
||||
/**
|
||||
* access function
|
||||
* @return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
|
||||
* return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
|
||||
*/
|
||||
void getSegmentationPicture(OutputArray transientAreas);
|
||||
|
||||
|
@@ -27,7 +27,7 @@ class CV_EXPORTS_W BlockMeanHash : public ImgHashBase
|
||||
{
|
||||
public:
|
||||
/** @brief Create BlockMeanHash object
|
||||
@param mode
|
||||
@param mode the mode
|
||||
*/
|
||||
CV_WRAP void setMode(int mode);
|
||||
CV_WRAP std::vector<double> getMean() const;
|
||||
@@ -39,7 +39,7 @@ protected:
|
||||
/** @brief Computes block mean hash of the input image
|
||||
@param inputArr input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.
|
||||
@param outputArr Hash value of input, it will contain 16 hex decimal number, return type is CV_8U
|
||||
@param mode
|
||||
@param mode the mode
|
||||
*/
|
||||
CV_EXPORTS_W void blockMeanHash(cv::InputArray inputArr,
|
||||
cv::OutputArray outputArr,
|
||||
|
@@ -50,14 +50,14 @@ int main( int argc, char** argv ){
|
||||
for(size_t npos=0,pos=0,ctr=0;ctr<4;ctr++){
|
||||
npos=initBoundingBox.find_first_of(',',pos);
|
||||
if(npos==string::npos && ctr<3){
|
||||
printf("bounding box should be given in format \"x1,y1,x2,y2\",where x's and y's are integer cordinates of opposed corners of bdd box\n");
|
||||
printf("bounding box should be given in format \"x1,y1,x2,y2\",where x's and y's are integer coordinates of opposed corners of bdd box\n");
|
||||
printf("got: %s\n",initBoundingBox.substr(pos,string::npos).c_str());
|
||||
printf("manual selection of bounding box will be employed\n");
|
||||
break;
|
||||
}
|
||||
int num=atoi(initBoundingBox.substr(pos,(ctr==3)?(string::npos):(npos-pos)).c_str());
|
||||
if(num<=0){
|
||||
printf("bounding box should be given in format \"x1,y1,x2,y2\",where x's and y's are integer cordinates of opposed corners of bdd box\n");
|
||||
printf("bounding box should be given in format \"x1,y1,x2,y2\",where x's and y's are integer coordinates of opposed corners of bdd box\n");
|
||||
printf("got: %s\n",initBoundingBox.substr(pos,npos-pos).c_str());
|
||||
printf("manual selection of bounding box will be employed\n");
|
||||
break;
|
||||
|
@@ -908,7 +908,7 @@ void CvHOGEvaluator::Feature::write( FileStorage &fs ) const
|
||||
//}
|
||||
|
||||
//cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block
|
||||
//All block is nessesary for block normalization
|
||||
//All block is necessary for block normalization
|
||||
void CvHOGEvaluator::Feature::write( FileStorage &fs, int featComponentIdx ) const
|
||||
{
|
||||
fs << CC_RECT << "[:" << rect[0].x << rect[0].y << rect[0].width << rect[0].height << featComponentIdx << "]";
|
||||
|
@@ -107,7 +107,7 @@ guided image then use DTFilter interface to avoid extra computations on initiali
|
||||
@param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
|
||||
depth and up to 4 channels.
|
||||
@param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
|
||||
@param dst
|
||||
@param dst destination image
|
||||
@param sigmaSpatial \f${\sigma}_H\f$ parameter in the original article, it's similar to the sigma in the
|
||||
coordinate space into bilateralFilter.
|
||||
@param sigmaColor \f${\sigma}_r\f$ parameter in the original article, it's similar to the sigma in the
|
||||
|
Reference in New Issue
Block a user