mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 11:21:39 +08:00
commit
This commit is contained in:
@@ -56,7 +56,7 @@ namespace cv
|
||||
start=clock();{a} milisec=1000.0*(clock()-start)/CLOCKS_PER_SEC;\
|
||||
printf("%-90s took %f milis\n",#a,milisec); }
|
||||
#define HERE fprintf(stderr,"%d\n",__LINE__);fflush(stderr);
|
||||
#define START_TICK(name) { clock_t start;float milisec=0.0; start=clock();
|
||||
#define START_TICK(name) { clock_t start;double milisec=0.0; start=clock();
|
||||
#define END_TICK(name) milisec=1000.0*(clock()-start)/CLOCKS_PER_SEC;\
|
||||
printf("%s took %f milis\n",name,milisec); }
|
||||
extern Rect2d etalon;
|
||||
|
@@ -81,6 +81,7 @@ public:
|
||||
static void onMouse( int event, int x, int y, int, void* obj){
|
||||
((MyMouseCallbackDEBUG*)obj)->onMouse(event,x,y);
|
||||
}
|
||||
MyMouseCallbackDEBUG& operator= (const MyMouseCallbackDEBUG& /*other*/){return *this;}
|
||||
private:
|
||||
void onMouse( int event, int x, int y);
|
||||
Mat& img_,imgBlurred_;
|
||||
@@ -309,13 +310,15 @@ bool TrackerTLD::updateImpl(const Mat& image, Rect2d& boundingBox){
|
||||
}
|
||||
data->printme();
|
||||
tldModel->printme(stdout);
|
||||
if(!true && data->frameNum==82){
|
||||
#if !1
|
||||
if(data->frameNum==82){
|
||||
printf("here I am\n");
|
||||
MyMouseCallbackDEBUG* callback=new MyMouseCallbackDEBUG(imageForDetector,image_blurred,detector);
|
||||
imshow("picker",imageForDetector);
|
||||
setMouseCallback( "picker", MyMouseCallbackDEBUG::onMouse, (void*)callback);
|
||||
waitKey();
|
||||
}
|
||||
#endif
|
||||
|
||||
if(it==candidatesRes.end()){
|
||||
data->confident=false;
|
||||
@@ -397,25 +400,21 @@ timeStampPositiveNext(0),timeStampNegativeNext(0),params_(params){
|
||||
for(int i=0;i<(int)closest.size();i++){
|
||||
for(int j=0;j<20;j++){
|
||||
Mat_<uchar> standardPatch(15,15);
|
||||
if(true){
|
||||
center.x=closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01));
|
||||
center.y=closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01));
|
||||
size.width=closest[i].width*rng.uniform((double)0.99,(double)1.01);
|
||||
size.height=closest[i].height*rng.uniform((double)0.99,(double)1.01);
|
||||
float angle=rng.uniform((double)-10.0,(double)10.0);
|
||||
center.x=(float)(closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01)));
|
||||
center.y=(float)(closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01)));
|
||||
size.width=(float)(closest[i].width*rng.uniform((double)0.99,(double)1.01));
|
||||
size.height=(float)(closest[i].height*rng.uniform((double)0.99,(double)1.01));
|
||||
float angle=rng.uniform(-10.0,10.0);
|
||||
|
||||
resample(scaledImg,RotatedRect(center,size,angle),standardPatch);
|
||||
|
||||
for(int y=0;y<standardPatch.rows;y++){
|
||||
for(int x=0;x<standardPatch.cols;x++){
|
||||
standardPatch(x,y)+=rng.gaussian(5.0);
|
||||
}
|
||||
resample(scaledImg,RotatedRect(center,size,angle),standardPatch);
|
||||
|
||||
for(int y=0;y<standardPatch.rows;y++){
|
||||
for(int x=0;x<standardPatch.cols;x++){
|
||||
standardPatch(x,y)+=(uchar)rng.gaussian(5.0);
|
||||
}
|
||||
|
||||
resample(blurredImg,RotatedRect(center,size,angle),blurredPatch);
|
||||
}else{
|
||||
resample(scaledImg,closest[i],standardPatch);
|
||||
}
|
||||
|
||||
resample(blurredImg,RotatedRect(center,size,angle),blurredPatch);
|
||||
pushIntoModel(standardPatch,true);
|
||||
resample(blurredImg,closest[i],blurredPatch);
|
||||
for(int k=0;k<(int)classifiers.size();k++){
|
||||
@@ -502,7 +501,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
|
||||
if(!patchVariance(intImgP,intImgP2,originalVariance,Point(dx*i,dy*j),initSize)){
|
||||
continue;
|
||||
}
|
||||
if(!ensembleClassifier(&blurred_img.at<uchar>(dy*j,dx*i),blurred_img.step[0])){
|
||||
if(!ensembleClassifier(&blurred_img.at<uchar>(dy*j,dx*i),(int)blurred_img.step[0])){
|
||||
continue;
|
||||
}
|
||||
pass++;
|
||||
@@ -530,12 +529,12 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
|
||||
size.height/=1.2;
|
||||
scale*=1.2;
|
||||
resize(img,resized_img,size);
|
||||
GaussianBlur(resized_img,blurred_img,GaussBlurKernelSize,0.0);
|
||||
GaussianBlur(resized_img,blurred_img,GaussBlurKernelSize,0.0f);
|
||||
}while(size.width>=initSize.width && size.height>=initSize.height);
|
||||
END_TICK("detector");
|
||||
|
||||
fprintf(stdout,"after NCC: nneg=%d npos=%d\n",nneg,npos);
|
||||
if(!false){
|
||||
#if !0
|
||||
std::vector<Rect2d> poss,negs;
|
||||
for(int i=0;i<(int)rect.size();i++){
|
||||
if(isObject[i])
|
||||
@@ -545,8 +544,8 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
|
||||
}
|
||||
fprintf(stdout,"%d pos and %d neg\n",(int)poss.size(),(int)negs.size());
|
||||
drawWithRects(img,negs,poss);
|
||||
}
|
||||
if(!true){
|
||||
#endif
|
||||
#if !1
|
||||
std::vector<Rect2d> scanGrid;
|
||||
generateScanGrid(img.rows,img.cols,initSize,scanGrid);
|
||||
std::vector<double> results;
|
||||
@@ -561,8 +560,8 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
|
||||
rectangle( image,scanGrid[it-results.begin()], 255, 1, 1 );
|
||||
imshow("img",image);
|
||||
waitKey();
|
||||
}
|
||||
if(!true){
|
||||
#endif
|
||||
#if !1
|
||||
Mat image;
|
||||
img.copyTo(image);
|
||||
rectangle( image,res, 255, 1, 1 );
|
||||
@@ -571,7 +570,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
|
||||
}
|
||||
imshow("img",image);
|
||||
waitKey();
|
||||
}
|
||||
#endif
|
||||
|
||||
fprintf(stdout,"%d after ensemble\n",pass);
|
||||
if(maxSc<0){
|
||||
@@ -698,7 +697,7 @@ void TrackerTLDModel::integrateAdditional(const std::vector<Mat_<uchar> >& eForM
|
||||
}
|
||||
double p=0;
|
||||
for(int i=0;i<(int)classifiers.size();i++){
|
||||
p+=classifiers[i].posteriorProbability(eForEnsemble[k].data,eForEnsemble[k].step[0]);
|
||||
p+=classifiers[i].posteriorProbability(eForEnsemble[k].data,(int)eForEnsemble[k].step[0]);
|
||||
}
|
||||
p/=classifiers.size();
|
||||
if((p>0.5)!=isPositive){
|
||||
@@ -739,17 +738,17 @@ int Pexpert::additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std:
|
||||
for(int i=0;i<(int)closest.size();i++){
|
||||
for(int j=0;j<10;j++){
|
||||
Mat_<uchar> standardPatch(15,15),blurredPatch(initSize_);
|
||||
center.x=closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01));
|
||||
center.y=closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01));
|
||||
size.width=closest[i].width*rng.uniform((double)0.99,(double)1.01);
|
||||
size.height=closest[i].height*rng.uniform((double)0.99,(double)1.01);
|
||||
float angle=rng.uniform((double)-5.0,(double)5.0);
|
||||
center.x=(float)(closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01)));
|
||||
center.y=(float)(closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01)));
|
||||
size.width=(float)(closest[i].width*rng.uniform((double)0.99,(double)1.01));
|
||||
size.height=(float)(closest[i].height*rng.uniform((double)0.99,(double)1.01));
|
||||
float angle=rng.uniform(-5.0,5.0);
|
||||
|
||||
resample(scaledImg,RotatedRect(center,size,angle),standardPatch);
|
||||
resample(blurredImg,RotatedRect(center,size,angle),blurredPatch);
|
||||
for(int y=0;y<standardPatch.rows;y++){
|
||||
for(int x=0;x<standardPatch.cols;x++){
|
||||
standardPatch(x,y)+=rng.gaussian(5.0);
|
||||
standardPatch(x,y)+=(uchar)rng.gaussian(5.0);
|
||||
}
|
||||
}
|
||||
examplesForModel.push_back(standardPatch);
|
||||
|
Reference in New Issue
Block a user