mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 19:44:14 +08:00
149 lines
7.1 KiB
C++
Executable File
149 lines
7.1 KiB
C++
Executable File
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2009, Willow Garage, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/**
|
|
* @file demo_sphereview_data.cpp
|
|
* @brief Generating training data for CNN with triplet loss.
|
|
* @author Yida Wang
|
|
*/
|
|
#include <opencv2/cnn_3dobj.hpp>
|
|
#include <opencv2/viz/vizcore.hpp>
|
|
#include <iostream>
|
|
#include <stdlib.h>
|
|
using namespace cv;
|
|
using namespace std;
|
|
using namespace cv::cnn_3dobj;
|
|
int main(int argc, char *argv[])
|
|
{
|
|
const String keys = "{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../data/3Dmodel/ape.ply -imagedir=../data/images_all/ -labeldir=../data/label_all.txt -num_class=6 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}"
|
|
"{ite_depth | 3 | Iteration of sphere generation.}"
|
|
"{plymodel | ../data/3Dmodel/ape.ply | Path of the '.ply' file for image rendering. }"
|
|
"{imagedir | ../data/images_all/ | Path of the generated images for one particular .ply model. }"
|
|
"{labeldir | ../data/label_all.txt | Path of the generated images for one particular .ply model. }"
|
|
"{cam_head_x | 0 | Head of the camera. }"
|
|
"{cam_head_y | -1 | Head of the camera. }"
|
|
"{cam_head_z | 0 | Head of the camera. }"
|
|
"{num_class | 6 | Total number of classes of models}"
|
|
"{label_class | 0 | Class label of current .ply model}"
|
|
"{rgb_use | 0 | Use RGB image or grayscale}";
|
|
/* Get parameters from comand line. */
|
|
cv::CommandLineParser parser(argc, argv, keys);
|
|
parser.about("Generating training data for CNN with triplet loss");
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
int ite_depth = parser.get<int>("ite_depth");
|
|
string plymodel = parser.get<string>("plymodel");
|
|
string imagedir = parser.get<string>("imagedir");
|
|
string labeldir = parser.get<string>("labeldir");
|
|
int num_class = parser.get<int>("num_class");
|
|
int label_class = parser.get<int>("label_class");
|
|
float cam_head_x = parser.get<float>("cam_head_x");
|
|
float cam_head_y = parser.get<float>("cam_head_y");
|
|
float cam_head_z = parser.get<float>("cam_head_z");
|
|
int rgb_use = parser.get<int>("rgb_use");
|
|
cv::cnn_3dobj::icoSphere ViewSphere(10,ite_depth);
|
|
std::vector<cv::Point3d> campos = ViewSphere.CameraPos;
|
|
std::fstream imglabel;
|
|
char* p=(char*)labeldir.data();
|
|
imglabel.open(p, fstream::app|fstream::out);
|
|
bool camera_pov = true;
|
|
/* Create a window using viz. */
|
|
viz::Viz3d myWindow("Coordinate Frame");
|
|
/* Set window size as 64*64, we use this scale as default. */
|
|
myWindow.setWindowSize(Size(64,64));
|
|
/* Set background color. */
|
|
myWindow.setBackgroundColor(viz::Color::gray());
|
|
myWindow.spin();
|
|
/* Create a Mesh widget, loading .ply models. */
|
|
viz::Mesh objmesh = viz::Mesh::load(plymodel);
|
|
/* Get the center of the generated mesh widget, cause some .ply files. */
|
|
Point3d cam_focal_point = ViewSphere.getCenter(objmesh.cloud);
|
|
float radius = ViewSphere.getRadius(objmesh.cloud, cam_focal_point);
|
|
objmesh.cloud = objmesh.cloud/radius*100;
|
|
cam_focal_point = cam_focal_point/radius*100;
|
|
Point3d cam_y_dir;
|
|
cam_y_dir.x = cam_head_x;
|
|
cam_y_dir.y = cam_head_y;
|
|
cam_y_dir.z = cam_head_z;
|
|
const char* headerPath = "../data/header_for_";
|
|
const char* binaryPath = "../data/binary_";
|
|
ViewSphere.createHeader((int)campos.size(), 64, 64, headerPath);
|
|
/* Images will be saved as .png files. */
|
|
for(int pose = 0; pose < (int)campos.size(); pose++){
|
|
char* temp = new char;
|
|
sprintf (temp,"%d",label_class);
|
|
string filename = temp;
|
|
filename += "_";
|
|
sprintf (temp,"%d",pose);
|
|
filename += temp;
|
|
filename += ".png";
|
|
imglabel << filename << ' ' << (int)(campos.at(pose).x*100) << ' ' << (int)(campos.at(pose).y*100) << ' ' << (int)(campos.at(pose).z*100) << endl;
|
|
filename = imagedir + filename;
|
|
/* Get the pose of the camera using makeCameraPoses. */
|
|
Affine3f cam_pose = viz::makeCameraPose(campos.at(pose)*380+cam_focal_point, cam_focal_point, cam_y_dir*380+cam_focal_point);
|
|
/* Get the transformation matrix from camera coordinate system to global. */
|
|
Affine3f transform = viz::makeTransformToGlobal(Vec3f(1.0f,0.0f,0.0f), Vec3f(0.0f,1.0f,0.0f), Vec3f(0.0f,0.0f,1.0f), campos.at(pose));
|
|
viz::WMesh mesh_widget(objmesh);
|
|
/* Pose of the widget in camera frame. */
|
|
Affine3f cloud_pose = Affine3f().translate(Vec3f(1.0f,1.0f,1.0f));
|
|
/* Pose of the widget in global frame. */
|
|
Affine3f cloud_pose_global = transform * cloud_pose;
|
|
/* Visualize camera frame. */
|
|
if (!camera_pov)
|
|
{
|
|
viz::WCameraPosition cpw(1); // Coordinate axes
|
|
viz::WCameraPosition cpw_frustum(Vec2f(0.5, 0.5)); // Camera frustum
|
|
myWindow.showWidget("CPW", cpw, cam_pose);
|
|
myWindow.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose);
|
|
}
|
|
|
|
/* Visualize widget. */
|
|
mesh_widget.setRenderingProperty(viz::LINE_WIDTH, 4.0);
|
|
myWindow.showWidget("ape", mesh_widget, cloud_pose_global);
|
|
|
|
/* Set the viewer pose to that of camera. */
|
|
if (camera_pov)
|
|
myWindow.setViewerPose(cam_pose);
|
|
/* Save screen shot as images. */
|
|
myWindow.saveScreenshot(filename);
|
|
/* Write images into binary files for further using in CNN training. */
|
|
ViewSphere.writeBinaryfile(filename, binaryPath, headerPath,(int)campos.size()*num_class, label_class, (int)(campos.at(pose).x*100), (int)(campos.at(pose).y*100), (int)(campos.at(pose).z*100), rgb_use);
|
|
}
|
|
imglabel.close();
|
|
return 1;
|
|
};
|